
REST Gateway Demo Documentation
Release 1.0

Hiranya Jayathilaka

September 07, 2015

Contents

1 Introduction 3
1.1 Backend SOAP Service . 3
1.2 Synapse ESB Configuration . 4
1.3 Sample Client Scripts . 4

2 Getting Familiar with Apache Synapse 5
2.1 Simple Proxy Services . 6
2.2 Messaging Model . 7
2.3 REST API Support . 7
2.4 More Documentation and Samples . 8
2.5 Configuration Language . 8
2.6 WSO2 ESB . 8

3 REST Gateway Tutorial 11
3.1 Prerequisites . 11
3.2 Setting Up the Backend Server . 11
3.3 Setting Up the ESB . 13
3.4 Running the REST Client . 14
3.5 Testing Content Negotiation . 15
3.6 Tracing Messages . 17

4 REST Gateway Implementation 19
4.1 Order API (StarbucksOrderAPI) . 19
4.2 Order List API (StarbucksOrderListAPI) . 20
4.3 Error Handling . 21

5 Indices and tables 23

i

ii

REST Gateway Demo Documentation, Release 1.0

Contents:

Contents 1

REST Gateway Demo Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

Apache Synapse is a lightweight Enterprise Service Bus (ESB) that supports a wide range of communication protocols
and messaging standards. It enables integrating heterogeneous systems in a simple and unified manner without requir-
ing the system integrators to modify any of the existing applications or write custom adapters. Instead, the Synapse
ESB is configured using a simple XML based metalanguage to define high-level APIs, services, endpoints and me-
diation flows to construct fully automated business processes and implement powerful Enterprise Integration Patterns
(EIPs).

Synapse provides comprehensive support for RESTful services as well as traditional SOAP/WS-* services. This allows
developers to use Synapse as a gateway (proxy) for both SOAP and RESTful services. More specifically, Synapse can
be used to provide a REST gateway for a collection of SOAP services. This is a particularly useful feature by which
an existing SOAP service can be made available to a completely different group of consumers (e.g. RESTful mobile
clients) without having to change any code related to the backend web service. In this tutorial we will look at how to
use Apache Synapse as a REST gateway for a set of given SOAP services. We will look at how to define RESTful
APIs in Synapse using its metalanguage and then map RESTful API calls into SOAP web service requests without
compromising any features or semantics of the backend SOAP services.

This demonstration consists of 3 parts (available in 3 separate directories).

• Backend SOAP service

• Synapse ESB configuration

• Sample client scripts

Read on to learn more about each of these components.

1.1 Backend SOAP Service

We are going to use a simple order management demo service as our backend SOAP service. It supports the following basic operations.

• addOrder - Place a new order for a drink

• getOrder - Get the details regarding an existing order

• updateOrder - Update an existing order

• deleteOrder - Delete/Cancel an existing order

• getAllOrders - Get a list of all existing orders

The service has been implemented in Java using the Apache Axis2 framework. Therefore it can be deployed
in Axis2 or any Axis2 compatible service container. To build the deployable service artifact, go into the
service/OrderManagementService directory and run the following Maven command.

3

http://synapse.apache.org
http://axis.apache.org
http://maven.apache.org

REST Gateway Demo Documentation, Release 1.0

mvn clean install

This will create a binary file named OrderManagementService.aar in the target directory which can be
directory deployed.

1.2 Synapse ESB Configuration

As mentioned earlier, Apache Synapse is configured using a simple XML based metalanguage to receive, process and
mediate service requests. In order to use Synapse as a gateway between REST clients and SOAP services, we need a
set of Synapse configuration files that can process RESTful service requests by converting them into standard SOAP
requests. In this demo application we configure Synapse to receive RESTful service requests and convert them into
SOAP requests that can be sent to our backend order management service. SOAP responses from the backend service
are converted back to the original REST style and sent back to the client. This way a RESTful client can interact
with our SOAP based order management service using pure REST calls, without ever knowing that the backend is
actually based on SOAP. Therefore the Synapse ESB acts as a transparent proxy between the REST client and the
SOAP service in this case.

The set of Synapse configuration files for this demo can be found in the esb/synapse-config directory. These
files can be directly deployed in Apache Synapse by copying them to the repository/conf/synapse-config
directory of the Synapse installation. For the tutorial we will be using WSO2 ESB, an open source ESB prod-
uct that uses Synapse as its mediation engine. In that case these configuration files should be copied to the
repository/deployment/server/synapse-configs/default directory of the ESB installation.

1.3 Sample Client Scripts

In order to interact with this demo application, some RESTful client tool is necessary. A simple command line tool
such as curl can be used for this purpose. In order to simplyfy the testing procedure, a set of sample Python scripts
(based on httplib) are provided in the client directory.

You may use any other REST client application to interact with this demo and try it out. If you are looking for a more
UI oriented client tool, please check out the Chrome Advanced REST Client.

4 Chapter 1. Introduction

http://wso2.com/products/enterprise-service-bus/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US

CHAPTER 2

Getting Familiar with Apache Synapse

Apache Synapse is a lightweight Enterprise Service Bus (ESB) that caters a wide range of service integration and messaging requirements. Some of the fundamental capabilities of Synapse are;

• Message logging

• Message filtering

• Content based routing

• URL rewriting

• Message transformation

• Protocol switching

• Load balancing and fail-over routing

• Persistent messaging support

• Message enriching

With these basic features, Synapse enables the developers and system integrators to connect multiple heterogeneous
systems and implement a wide range of enterprise integration patterns (EIPs). This is particularly useful in large
enterprise settings, where a number of disparate systems must co-exist and work together in perfect synchronism to
support complex business processes and workflows.

What makes Synapse even more attractive is the fact that Synapse facilitates a zero-code approach for connecting sys-
tems. This implies that multiple systems can be connected via Synapse without having to write any custom adaptation
code. Instead, Synapse only needs to be configured using a very high-level, XML-based metalanguage. The language
is simple, intuitive and abstracts out all the wire-level and other implementation details of the message flows and
systems being integrated. Therefore the configurations are easy to develop, highly reusable and easy to maintain over
time. The backend systems can undergo architecture or implementation level changes without inducing any changes
to the Synapse configuration.

Since the ESB acts as a hub that sits between several systems, it’s crucial that the ESB does not introduce any unnec-
essary latencies to the message flows that go through it. Synapse really stands out from other similar ESB products
with regard to this aspect. Benchmarking results have shown that Synapse and the ESB products based on Synapse
are the among the fastest in the world, can handle thousands of concurrent connections and can handle enormous
volumes of traffic at sub millisecond latencies. Some recent benchmark results involving Synapse can be found at
http://wso2.org/library/articles/2013/01/esb-performance-65.

5

http://wso2.org/library/articles/2013/01/esb-performance-65

REST Gateway Demo Documentation, Release 1.0

2.1 Simple Proxy Services

This section provides a quick tutorial aimed at giving a little taste of what Synapse really is and how to use it in
practice.

• Start by downloading the Apache Synapse binary distribution. The latest stable release as of now is
v2.1.0

• Simply extract the downloaded archive to install the ESB.

unzip synapse-2.1.0-bin.zip
tar xvf synapse-2.1.0-bin.tar.gz

• Synapse ships with a set of prepackaged sample configurations. Each sample is identified by a
unique numeric identifier. For this tutorial we will be using sample 150. To start ESB with this
sample configuration simply run the following command from the bin directory of the Synapse
installation.

Unix/Linux: sh synapse.sh -sample 150
Windows: synapse.bat -sample 150

• Sample 150 consists of a simple proxy service configuration. Proxy services are used to intercept
web service requests before they reach their actual target destinations and perform some additional
processing (can perform both pre-processing and post-processing). The exact configuration used in
sample 150 looks like this.

<proxy name="StockQuoteProxy">
<target>

<endpoint>
<address uri="http://localhost:9000/services/SimpleStockQuoteService"/>

</endpoint>
<outSequence>

<send/>
</outSequence>

</target>
<publishWSDL uri="file:repository/conf/sample/resources/proxy/sample_proxy_1.wsdl"/>

</proxy>

• This tells Synapse to expose a proxy service named StockQuoteProxy. Any
requests received by this service will be forwarded to the backend endpoint
http://localhost:9000/services/SimpleStockQuoteService. The responses
coming back from the service will be sent back to the client as they are. Therefore this proxy service
does not really perform any additional processing on the messages. It simply acts as a transparent
pass-through pipe between the client and the server.

• To try this out we should first start a sample backend service at
http://localhost:9000/services/SimpleStockQuoteService.
Synapse ships with all the artifacts needed for this. Simply head over to the
samples/axis2Server/src/SimpleStockQuoteService directory and invoke
ANT.

ant

• This would build a mock web service named SimpleStockQuoteService and deploy it into
a sample Axis2 server that ships with Synapse. To start this sample backend server, head over to
samples/axis2Server and run the appropriate startup script.

6 Chapter 2. Getting Familiar with Apache Synapse

http://synapse.apache.org/download.html
http://synapse.apache.org/userguide/samples/sample150.html

REST Gateway Demo Documentation, Release 1.0

Unix/Linux: sh axis2server.sh
Windows: axis2server.bat

• Now you have a backend server running. To invoke the proxy service, head over to
samples/axis2Client directory and run the following ANT command.

ant stockquote -Daddurl=http://localhost:8280/services/StockQuoteProxy

• This would invoke your proxy service, which in turns invokes the backend Axis2 service and gets
you the desired response. You can also use a tool such as SOAP-UI to try out the proxy service.

• Finally, launch your web browser and navigate to the URL
http://localhost:8280/services/StockQuoteProxy?wsdl to see the WSDL
exposed by Synapse for the proxy service we configured.

2.2 Messaging Model

Previous section gave a breif outline of what it takes to install and run simple integration scenarios using Synapse.
This section provides more detailed information about how Synapse works and what the underlying messaging model
looks like.

The smallest configurable unit in Synapse is known as a mediator. A mediator can be viewed as a black box that takes
an input message, performs some processing on it and produces an output message. Synapse ships with a large number
of built-in mediators that are designed to handle various tasks such as logging, XSLT transformation, database lookups
and URL rewriting. Using the Synapse configuration language we can combine multiple mediators to form complex
message flows (sequences). Multiple sequences can be further combined to form high-level services.

Therefore the task of configuring Synapse boils down to defining the required sequences and services. In the previous
section we configured a proxy service. A proxy service typically consists of an in-sequence and an out-sequence. The
in-sequence mediates all the requests received by the proxy service and the out-sequence mediates all the responses
sent by the backend service. In sample 150 however we only have an out-sequence configured. But it also have
a target endpoint configured. From this Synapse infers that the requests must be directly forwarded to the target
endpoint without performing any processing on it. The single send mediator configured in the out-sequence instructs
Synapse to simply pass the response along to the client that started the invocation. If we need to perform some
additional processing on the requests in this proxy service, all we need to do is to define an in-sequence in the proxy
service and specify the required set of mediators. In the out-sequence it is possible to add more mediators and add
more processing capabilities to the response flow. It is even possible to forward the response of the backend service to
a different service and thereby chaining multiple services together to construct complex workflows.

Synapse mediators provide a high-level abstraction which allows the developers to configure services without consid-
ering the actual application layer protocol and the message format used to send/receive messages. All the messages are
converted to the SOAP format before they are injected into the Synapse mediation engine. Therefore the message flow
designer can simply assume that all messages are SOAP messages and invoke mediators on them. Therefore Synapse
provides a uniform model for dealing with all types of messages and protocols.

2.3 REST API Support

Starting from version 2.1.0, Apache Synapse has comprehensive support for exposing REST APIs on the ESB and me-
diating RESTful service requests. Our demo application relies primarily on this REST mediation support of Synapse.
A REST API configured in Synapse is somewhat similar to a webapp deployed in a servlet container. Each API has
a unique name and it is anchored at a specific URL context. Within the API we can define one or more resources.
Each resource is equivalent to a proxy service, with their own in-sequences and out-sequences. Each resource can

2.2. Messaging Model 7

REST Gateway Demo Documentation, Release 1.0

be configured to handle a particular URI template and/or HTTP method combination. Lets consider the following
example API.

<api name="StockQuoteAPI" context="/stockquote">
<resource uri-template="/view/{symbol}" methods="GET">
<inSequence>

...
</inSequence>
<outSequence>
...

</outSequence>
</resource>
<resource url-pattern="/order/*" methods="POST">
<inSequence>

...
</inSequence>

</resource>
</api>

This API is anchored at the /stockquote context. Therefore it will handle any HTTP request whose re-
quest URL path starts with /stockquote. Then the API defines 2 resources. One resource will handle GET
requests to the path /stockquote/view/{symbol} and the other will handle POST requests to the path
/stockquote/order/*. Within each resource we can define in-sequences and out-sequences with any suitable
mediator configuration to process the RESTful service requests.

2.4 More Documentation and Samples

To learn more about Apache Synapse, please refer to the official Synapse documentation. This includes a complete
catalog of samples that Synapse ships with and detailed instructions on how to try them out. More specifically there are
samples on Synapse message flows, mediators, proxy services, protocol switching and a number of other interesting
scenarios.

2.5 Configuration Language

The configuration language specification for Synapse can be found at official Synapse documentation. The language
is simple, intuitive and XML-based. Therefore most services and message flows can be constructed for Synapse by
manually editing XML. If graphical tooling support is required, WSO2 Developer Studio which is based on Eclipse
can be used.

Even though this is a high-level metalanguage, it supports all the faimilar constructs of a traditional programming
language. If-else constructs, switch-case constructs and try-catch constructs are built into the language in the form of
various mediators which can be used to construct powerful message flows with comprehensive control and data flow.

2.6 WSO2 ESB

For this demonstration we will not be using vanilla Apache Synapse. Rather we will be using WSO2 ESB which is
an open source ESB based on Synapse. WSO2 ESB uses Synapse as its mediation engine and hence supports all the
features (and more) that Synapse does. The same XML-based metalanguage used to configure Synapse is used to
configure WSO2 ESB as well. This means any valid Synapse configuration is also a WSO2 ESB configuration and
vice versa. In addition to the set of features provided by Synapse, WSO2 ESB provides excellent UI support, powerful
management capabilities and flexible tooling support.

8 Chapter 2. Getting Familiar with Apache Synapse

http://synapse.apache.org/index.html
http://synapse.apache.org/userguide/samples.html
http://synapse.apache.org/userguide/config.html
http://wso2.com/products/developer-studio/
http://www.eclipse.org
http://wso2.com/products/enterprise-service-bus/

REST Gateway Demo Documentation, Release 1.0

The set of samples that ship with Synapse are also being shipped with WSO2 ESB. Please refer the ESB documentation
and samples guide to see how to try them out.

2.6. WSO2 ESB 9

http://docs.wso2.org/wiki/display/ESB460/Enterprise+Service+Bus+Documentation
http://docs.wso2.org/wiki/display/ESB460/Samples

REST Gateway Demo Documentation, Release 1.0

10 Chapter 2. Getting Familiar with Apache Synapse

CHAPTER 3

REST Gateway Tutorial

3.1 Prerequisites

You will need following software tools to try out this tutorial. Simply download them from the specified URLs for
now. The tutorial will guide you through the process of setting them up.

• WSO2 ESB 4.0.3 or higher (You can also use Synapse 2.1.0 instead. But the tutorial only provides instructions
for WSO2 ESB.)

• WSO2 Application Server 5.1.0 or higher (You can use any Axis2 compatible application server here. But the
tutorial only provides instructions for WSO2 Application Server.)

In addition to the above tools, your computer must be setup with the following infrastructure tools.

• JDK 1.6 or higher (Oracle JDK recommended)

• Python 2.7 or higher

• Apache Maven 3.0 or higher

The tutorial does not specify how to install these infrastructure software. Tutorial assumes that they are already
installed and available for use.

3.2 Setting Up the Backend Server

We are going to host our sample order management service in WSO2 Application Server. Therefore lets start by
setting up the Application Server.

• Simply extract the downloaded zip archive to install the WSO2 Application Server.

unzip wso2as-5.1.0.zip

• Go into the bin directory of the installation and execute the wso2server startup script to start the server.

Unix/Linux: sh wso2server.sh Windows: wso2server.bat

• Wait for the server to finish initialization. This could take a few seconds depending on how fast your machine
is.

Now that the server is up and running, lets deploy the order management service in it.

• Use Apache Maven to build the OrderManagementService.aar artifact. Simply go into to the
server/OrderManagementService directory of this sample package and run the following command.
This will create the required artifact in the server/OrderManagementService/target directory.

11

http://wso2.com/products/enterprise-service-bus/
http://wso2.com/products/application-server/
http://maven.apache.org

REST Gateway Demo Documentation, Release 1.0

mvn clean install

• Launch your web browser and navigate to the WSO2 Application Server management console. This is available
at https://localhost:9443/carbon.

• Sign in to the console using default administrator credentials.

Username: admin
Password: admin

• You are now in the home page of the Application Server’s management console.

• Click on the Manage > Services > Add > AAR Service option in the main menu.

12 Chapter 3. REST Gateway Tutorial

REST Gateway Demo Documentation, Release 1.0

• Browse and select the OrderManagementService.aar file and click on Upload to upload the artifact. Service
deployment will take a few seconds. Click/refresh the service listing page (under Manage > Services >
List in the main menu) and you will see the OrderManagementService listed there. Feel free click on it and
browse through the various options available. For instance you should be able to see the WSDLs of the service
and even invoke it online using the Try-It tool built into the management console. The service endpoint will be
http://localhost:9763/services/OrderManagementService.

3.3 Setting Up the ESB

Now we have our backend SOAP service up and running. So lets get started with the ESB (our REST gateway).

• Extract the downloaded WSO2 ESB archive to install it.

unzip wso2esb-4.0.3.zip

• Before we can start the server, we need to do some configuration changes. This is because by default WSO2
ESB is configured to use the same set of ports as WSO2 Application Server. Since we are starting both servers
in the same machine, we need to change the ESB ports before we can actually start it. To do this go into the
repository/conf directory of the ESB installation and open the carbon.xml file using a text editor.
Scroll down to the Ports configuration section and change the Offset value to 1. This will increment all the
port numbers used by the ESB by 1.

<Ports>

<!-- Ports offset. This entry will set the value of the ports defined below to
the define value + Offset.
e.g. Offset=2 and HTTPS port=9443 will set the effective HTTPS port to 9445
-->

<Offset>1</Offset>
...

3.3. Setting Up the ESB 13

REST Gateway Demo Documentation, Release 1.0

• Now we need to deploy our REST gateway configuration into the ESB. Go the
repository/deployment/server/synapse-configs/default directory of the ESB and
delete everything already available in there (files as well as folders). Then copy the contents of the
esb/synapse-config directory of this sample package into the default directory of the ESB.

cd esb_home/repository/deployment/server/synapse-config/default
rm -rf *
cp -r /path/to/sample/esb/synapse-config/* .

• [Optional Step] It is also advisable to bind the ESB HTTP interface to a proper IP address, before starting
the ESB. To do this open the repository/conf/axis2.xml file in a text editor and look for the HTTP
transportReceiver configuration. Uncomment the bind-address parameter and set its value to the IP
address of the machine. Or at least set it to the loop back address.

<transportReceiver name="http" class="org.apache.synapse.transport.nhttp.HttpCoreNIOListener">
<parameter name="port" locked="false">8280</parameter>
<parameter name="non-blocking" locked="false">true</parameter>
<parameter name="bind-address" locked="false">127.0.0.1</parameter>
<!--parameter name="WSDLEPRPrefix" locked="false">https://apachehost:port/somepath</parameter-->
<parameter name="httpGetProcessor" locked="false">org.wso2.carbon.transport.nhttp.api.NHttpGetProcessor</parameter>
<!--<parameter name="priorityConfigFile" locked="false">location of priority configuration file</parameter>-->

</transportReceiver>

• We are all set now. Head over to the bin directory of the ESB and start it up.

Unix/Linux: sh wso2server.sh
Windows: wso2server.bat

3.4 Running the REST Client

In this section we will look at how to run a REST client against our REST gateway and consume the backend SOAP
service. For an explanation on how the gateway is configured please refer REST Gateway Implementation.

All the sample client scripts and example data files are available in the cleint directory of this sample package.

• We will start by placing a few orders in our order management system. Run the place_order.py script to make a
HTTP POST request to the gateway and place an order.

python place_order.py -d "Cafe Misto"

• The script will display the exact HTTP request and response being exchanged. If all goes well the REST gateway
will respond with a HTTP 201 Created message.

send: 'POST /order HTTP/1.1\r\nHost: 127.0.0.1:8281\r\nAccept-Encoding: identity\r\nContent-Length: 107\r\nContent-type: application/xml\r\n\r\n<order xmlns="http://starbucks.example.org"><drink>Cafe Misto</drink></order>'
reply: 'HTTP/1.1 201 Created\r\n'
header: Content-Type: application/xml; charset=UTF-8
header: Location: http://127.0.0.1:8281/order/a35464d3-1049-4bba-a001-df534c299bdb
header: Server: WSO2 Carbon Server
header: Date: Thu, 25 Apr 2013 01:54:26 GMT
header: Transfer-Encoding: chunked
response: <order xmlns="http://ws.apache.org/ns/synapse"><drink>Cafe Misto</drink><cost>7.98</cost><next xmlns="http://example.org/state-machine" rel="http://127.0.0.1:8281/payment" type="application/xml" uri="http://127.0.0.1:8281/payment/order/a35464d3-1049-4bba-a001-df534c299bdb" /></order>

Order submitted successfully...
Your order can be reviewed at: http://127.0.0.1:8281/order/a35464d3-1049-4bba-a001-df534c299bdb

• Go ahead and place several orders by repeatedly executing the place_orders.py. Use the -d option to
change the name of the drink being ordered.

14 Chapter 3. REST Gateway Tutorial

REST Gateway Demo Documentation, Release 1.0

• Once you have placed a few orders, perform a GET request on the gateway to retrieve a complete list of all
orders. This can be done by executing the get_all_orders.py script. When executed the REST gateway
will respond with a live Atom feed of all the pending orders.

python get_all_orders.py

• Our backend SOAP service assigns a unique identifier to each order submitted. This identifier can
be used to retrieve a specific order through the REST gateway. Extract any order ID value from the
output of the Atom feed of the get_all_orders.py. Order ID values are embedded into al-
most all the URLs found in the Atom feed. For instance in the Atom feed you will see URLs like
http://127.0.0.1:8281/payment/order/a35464d3-1049-4bba-a001-df534c299bdb.
The section after the last / character, that is a35464d3-1049-4bba-a001-df534c299bdb is an order
ID. Run the get_order.py script as follows to retrieve a single order.

python get_order.py -o a35464d3-1049-4bba-a001-df534c299bdb

• The order ID can also be used to update a specific order. This is done by making a HTTP PUT request on the
remote order resource. Use the update_order.py as follows to change the drink name or add some flavor
to your drink order.

python update_order.py -o a35464d3-1049-4bba-a001-df534c299bdb -d Latte -a Vanilla

• You can use the order ID to delete/cancel orders too. This is done via a HTTP DELETE request on the REST
gateway. Use the delete_order.py as follows to try this out.

python delete_order.py -o a35464d3-1049-4bba-a001-df534c299bdb

• Try running get_order.py on a deleted order ID. You will notice that the gateway responds with a HTTP
404 Not Found response.

3.5 Testing Content Negotiation

Our REST gateway configuration in Synapse/ESB is capable of performing HTTP content negotiation. That is if
the client indicates which content type it prefers for the response messages, the gateway can attempt to generate the
response messages in that specified format. Client can indicate its preferred contnt type by sending a media type name
in the HTTP Accept header of the request. Synapse has been configured to look at this header value and send the
response in the client preferred format. To try this out, run the get_all_orders.py as follows with the -f option.

python get_all_orders.py -f "application/xml"
python get_all_orders.py -f "application/json"
python get_all_orders.py -f "text/html"

Notice how the Synapse will change the response format depending on a media type specified by the client. You can
also try this out by browsing to the URL http://localhost:8281/orders using a web browser. Most web
browsers send Accept: text/html header, so Synapse will send a valid HTML output that can be rendered on
a browser.

3.5. Testing Content Negotiation 15

REST Gateway Demo Documentation, Release 1.0

Internet Explorer doesn’t seem to be sending this header, so in that case Synapse defaults to Atom as the response
format. This triggers Internet Explorer to launch its built-in Atom feed reader.

16 Chapter 3. REST Gateway Tutorial

REST Gateway Demo Documentation, Release 1.0

3.6 Tracing Messages

Use a tool like TCPMon to trace the messages between client and ESB and ESB and Application Server. This will
give a clear idea of the actual content transformations performed by the ESB on each request-response invocation.

3.6. Tracing Messages 17

REST Gateway Demo Documentation, Release 1.0

18 Chapter 3. REST Gateway Tutorial

CHAPTER 4

REST Gateway Implementation

In this section we will look at how our REST-to-SOAP gateway is implemented. We will delve into the specifics of
the Synapse configuration which makes the transformation of REST to SOAP and back possible.

Our gateway demo consists of 2 REST API configurations.

• StarbucksOrderAPI - Handles placement, retrieval, updating and cancellation of individual orders

• StarbucksOrderListAPI - Handles the retrieval of all pending orders

4.1 Order API (StarbucksOrderAPI)

This API is anchored at the /order context. It consists of 2 resources, one to handle POST requests and another to
handle GET, PUT and DELETE requests.

<api context="/order" name="StarbucksOrderAPI">
<resource methods="POST" url-mapping="/">
...

</resource>
<resource methods="GET PUT DELETE" uri-template="/{orderId}">
...

</resource>
</api>

According to this configuration, a POST request on the /orderURL path would be handled by the first resource. Any
GET, PUT or DELETE requests on the /order/{orderId} path would be handled by the second resource. The
/{orderId} segment in the URL path is called a template variable, and the client should fill that part in when invok-
ing this API. That is the actual URL path of the second resource should be something like /order/my-order-id
where the string my-order-id fills in the orderId variable. Synapse makes it possible to access URI template
variables through the Synapse configuration language. We will shortly see how we can use the orderId value sent
by the client in our request processing logic. (Refer RFC6570 to learn more about URI templates)

The first resoruce accepts a simple XML document as its POST payload and transforms it into a SOAP place-
Order request which we can send to our backend order management service. This transformation is done using a
payloadFactory mediator.

<payloadFactory>
<format>

<ucsb:addOrder>
<ucsb:order>
<xsd:name>$1</xsd:name>
<xsd:additions>$2</xsd:additions>

</ucsb:order>

19

http://tools.ietf.org/html/rfc6570

REST Gateway Demo Documentation, Release 1.0

</ucsb:addOrder>
</format>
<args>
<arg expression="//sb:drink" />
<arg expression="//sb:additions" />

</args>
</payloadFactory>

The format section defines the structure of the the placeOrder SOAP request. It defines two variables $1 and $2
which needs to be filled by the values extracted from the original RESTful service request. The args section defines
how to extract these values from the REST request using simple XPath expressions.

We do a similar back transformation from SOAP to REST in the out-sequence of the resource configuration. Also since
the SOAP service always responds to the ESB with 200 OK responses, we use a proeprty mediator to change it to
201 Created.

<property name="HTTP_SC" scope="axis2" value="201" />

The second resource that handles GET, PUT and DELETE requests is conceptually similar to the first one but there
is more mediation logic. We use a switch mediator to differentiate between HTTP methods and handle them using
separate sequences. GET requests are transformed into SOAP getOrder requests, PUT requests are transformed into
SOAP updateOrder requests and DELETE requests are transformed into SOAP deleteOrder requests. These SOAP
requests require the order ID to be passed in, therefore we extract the order ID from the URI template defined in our
resource. This is done by executing a built-in Synapse XPath extension named $ctx:uri.var.*.

<payloadFactory>
<format>
<ucsb:getOrder>

<ucsb:orderId>$1</ucsb:orderId>
</ucsb:getOrder>

</format>
<args>
<arg expression="$ctx:uri.var.orderId" />

</args>
</payloadFactory>

In this case we use the XPath expression $ctx:uri.var.orderId to extract the value of the orderId template
variable and put it in a getOrder SOAP request.

4.2 Order List API (StarbucksOrderListAPI)

This API is anchored at the /orders context and consists of a single resource that handles HTTP GET requests.

<api name="StarbucksOrderListAPI" context="/orders">
<resource methods="GET" faultSequence="StarbucksFault">
...

</resource>
</api>

One of the first things this resource does is extracting the value of the HTTP Accept header and storing it in a
Synapse property variable.

<property name="STARBUCKS_ACCEPT" expression="$trp:Accept" />

We use this value later in the out-sequence to serialize the output into a format preferred by the client (content negoti-
ation). Once the required values have been extracted from the request, Synapse transforms the RESTful GET request
into a SOAP getAllOrders request.

20 Chapter 4. REST Gateway Implementation

REST Gateway Demo Documentation, Release 1.0

<payloadFactory>
<format>
<ucsb:getAllOrders />

</format>
</payloadFactory>

In the out-sequence we run a switch mediator on the value we extracted from the Accept header of the request,
and formats the message into the client preferred output format.

<switch source="$ctx:STARBUCKS_ACCEPT">
<case regex=".*atom.*">
...

</case>
<case regex=".*text/html.*">
...

</case>
<case regex=".*json.*">
...

</case>
<case regex=".*application/xml.*">
...

</case>
<default>
...

</default>
</switch>

Note that based on the value of the Accept header we can serialize the output in one of XML, JSON, HTML or Atom
formats. If the Accept header is not specified or the client requests for a format that we don’t support, we fall back to
Atom. The exact transformations from SOAP to HTML and SOAP to Atom are performed using the xslt mediator.
SOAP to JSON and SOAP to POX (XML) transformation are naturally supported by Synapse without any additional
mediators.

4.3 Error Handling

Synapse supports a concept of fault sequences which provides try-catch semantics in the mediation engine. A special
fault sequence can be registered with each message flow, service or API which gets triggered when an unexpected
error condition occurs. One such error condition that may occur in our demo application is that the client invoking the
StarbucksOrderAPI with an invalid order ID value. When this value is sent to the backend SOAP service it sends an
error response. A special fault sequence has been defined in Synapse to handle this situation and respond to the user
with a 404 Not Found response. Another fault sequence catches all other unexpected runtime errors and responds
to the user with a 500 Internal Server Error response.

4.3. Error Handling 21

REST Gateway Demo Documentation, Release 1.0

22 Chapter 4. REST Gateway Implementation

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

	Introduction
	Backend SOAP Service
	Synapse ESB Configuration
	Sample Client Scripts

	Getting Familiar with Apache Synapse
	Simple Proxy Services
	Messaging Model
	REST API Support
	More Documentation and Samples
	Configuration Language
	WSO2 ESB

	REST Gateway Tutorial
	Prerequisites
	Setting Up the Backend Server
	Setting Up the ESB
	Running the REST Client
	Testing Content Negotiation
	Tracing Messages

	REST Gateway Implementation
	Order API (StarbucksOrderAPI)
	Order List API (StarbucksOrderListAPI)
	Error Handling

	Indices and tables

